Çok katlı

Çok katlı, topolojide soyut topolojik bir uzay. Bu uzayın her noktasının çevresi Öklit uzayına benzer. Bununla birlikte, bir Çok Katlı bir Öklit uzayı olmak zorunda değildir. Genel yapısı, bu basit yerel yapısından çok daha karmaşık olabilir. Çok Katlı'nın boyutu, yerel olarak benzediği Öklit uzayının boyutu olarak tanımlanır. Herhangi bir topolojik uzay içinse boyut kavramından söz etmek genelde olası değildir.

n boyutlu Öklit uzayı (Rn), n boyutlu bir Çok Katlı'dır. Birkaç nokta, 0 boyutlu bir Çok Katlı'dır. Düzlemde bir doğru 1 boyutlu bir Çok Katlı'dır; her noktasının çevresi R1'e benzer. R3'te bir düzlem ya da bir küre, 2 boyutlu çok katlı örneğidir; her bir noktasının küme içinde çevresi R2'ye benzer.

Kelimenin kökeni

Çok katlı kelimesinin Almanca karşılığı Almanca: Mannigfaltigkeit'tir (çokyönlülük, çeşitlilik vs.). Bu terim, ilk kez Riemann'ın doçentlik tezinde (Habilitation, 1854) kullanmıştır. Yerel olarak n boyutlu uzaya benzeyen, ama her noktasında farklı eğriliklere sahip olabilecek bir uzay tasarlamış ve bu tür bir uzaya Almanca: Mannigfaltigkeit adını vermiştir. Doçentlik tezinde şu satırlar dikkat çekmektedir: [1]

[...] n katlı uzamın (n-fold extent) bir noktasındaki eğriliğine kavranabilir bir anlam verebilmek için şuradan başlamalıyız: bir noktadan başlayan bir jeodezik, ilk yönü verildiğinde tek bir biçimde tarif edilmiş olur. Buna göre, o noktadan ve verilen yüzey-yönleriyle başlayan tüm jeodezikler gözönüne alındığında, yüzeyin o noktasında bir eğrilik belirlenmiş olur. Bu eğrilik, aynı zamanda içinde bulunulan n katlı sürekliliğin (n-fold continuum) o noktada o yüzey yönünde eğriliğidir.

Uzaya uyarlamadan önce, düz çok katlılar (flat manifoldness) hakkında genel saptamalar yapmak gerekiyor[...] Düz bir n katlı uzamda toplam eğrilik her noktada her yönde sıfırdır[...] Eğriliği tamamen sıfır olan çok katlılar, eğriliği sabit olan çok katlıların özel bir durumu diye düşünülebilir[...]

Görüldüğü gibi Riemann, bu terimi tanımlarken daha sonra Riemann Geometrisi diye anılacak geometriyi kuruyordu. Kullandığı Almanca: -faltig eki, kat kat hissinden çok eğriliğin değişmesi yüzünden uzamın bükülüp kırışmasına işaret ediyordu. William Kingdon Clifford 1873'te Nature'da yayımlanan tercümesinde bu kelime "İngilizce: manifoldness" olarak karşılamıştır. [2] Türkçeye çeviri bu kelime üzerinden yapılmıştır.

Fransızca Fransızca: variété terimi ise (İngilizcedeki İngilizce: variety terimi gibi) cebirsel geometride analitik çok katlılara işaret eder.

Matematiksel tanım

(Kenarı olmayan) n boyutlu çok katlı, aşağıdaki koşulları sağlayan bir topolojik uzaydır:

  • Hausdorff'tur;
  • Herhangi bir noktasının çevresinde öyle bir açık komşuluk bulunabilir ki bu komşuluk Rn'nin açık bir alt kümesine homeomorfiktir;
  • (Kimi tanımlarda) İkinci sayılabilirlik özelliğini sağlar;
  • (Kimi tanımlarda) Parakompakttır.

Yukarıdaki tanımda ikinci koşulda Rn yerine, üst yarı Öklit uzayını (yani Rn'de sonuncu koordinatı negatif olmayan noktaların kümesi) temsil etmek üzere Hn konduğunda, bu tanım, kenarı olan (kenarlı) topolojik birçok katlı tanımına dönüşür. Bu durumda ikinci koşulda homeomorfizma kelimesinin anlamlı olabilmesi için Hn üzerinde bir topoloji bulunması gerekir. Bu topoloji standart olarak Rn'den tetiklenen topolojidir. M çok katlısının bir noktası x, Hn'de açık V kümesine homeomorfik x 'in açık komşuluğu U olsun. Bu homeomorfizma altında x, V 'nin kenarına gönderiliyorsa, x noktasına çok katlının kenar noktası, tüm kenar noktaların kümesine çok katlının kenarı denir.

Örneğin, düzlemde başnoktaya uzaklıkları 1'den büyük olmayan kümeyi ele alalım. Bu kümeye (kapalı) disk denir ve 2 boyutlu birçok katlıdır. Kenarı bir çemberdir. Çember 1 boyutlu birçok katlıdır. Kenarı yoktur.

n boyutlu, kenarlı birçok katlının kenarı, n-1 boyutlu birçok katlıdır. Birçok katlının kenarının kenarı yoktur (boşkümedir).

Birçok katlının içinde bir topolojik altuzay aynı zamanda birçok katlıysa, bu altuzaya altçok katlı denir. Yukarıda birçok katlının içinde verilen tüm çok katlılar altçok katlı örnekleridir.

Kaynakça

  1. "Über die Hypothesen, welche der Geometrie zu Grunde liegen. (Habilitationsschrift, 1854)" (PDF). EMIS, The European Mathematical Information Service. 9 Nisan 2016 tarihinde kaynağından (PDF) arşivlendi.
  2. Clifford, W.K. (1968 (1881 ilk baskısının yeniden basımı)). Mathematical Papers. Chelsea Publishing Co., New York. Tarih değerini gözden geçirin: |yıl= (yardım)

Okuma

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.