Milonit

Milonit, güçlü sünek[1] deformasyon için kanıt gösteren ve normalde matristeki minerallere benzer bileşime sahip yuvarlatılmış porfiroklast ve litik parçalar içeren, yapraklanmış ve genellikle çizgisel bir kayadır.

milonit
Knochan kayalığı üzerinde milonit
Otago Müzesi

Tanım

Milonit (Yunan Μύλος, değirmenden), kayaç kütleleri milonitleşme sürecinde doğrultu atımlı fayların (bindirme fayları, bindirmeler vb.) yüzeyleri boyunca hareketinde oluşan, ince rendelenmiş, kesilmiş bir kaya tektoniğidir. Mikroskop kullanarak, yumuşak minerallerin ince bir şekilde dağılmış agregalarında emprenye edilmiş orijinal kayanın (kuvars, feldspat, mika pulları) veya yeni oluşmuş (serisit, zoisit) mineral parçalarını görebilirsiniz.

Porfiroklastların içeriğine göre aşağıda gruba ayrılmıştır :

protomilonitler (porfiroklastların % 50'sinden fazlası)[2]

Ortomilonit

ortomilonitler- fillonitler(% 10-50)[3]

ultramilonitler (% 10'dan az).[4]

Felswand, Buchberger Leite

Milonitleşme, kataklazdan farklı olan kaya kırılmasının son aşamasıdır. Milonit zonları kırılma derinliğindedir ve milimetreden kilometreye kadar bir kalınlığa sahip olabilir. Güçlü, onlarca kilometre uzunluğunda, bölgesel bindirmelere katmanlar eşlik etmektedir. Ural Dağları'nda, Tien Shan'da, Kafkas Dağları'nda, Altay'da). Milonit zonunun kenarlarında, çizgisel ya da arduvaz dokusu, orijinal kayanınkiyle değiştirilmektedir.[5][6]

  • Kitterain- Milonit
    Milonit
  • Milonit kelimesi Yunancadaki değirmen kelimesinden türemiştir. Milonit, stratigrafik bir dizide kaya adı olarak kullanılmamalıdır.
  • Kalkan formasyonunun Proterozoyik-Paleozoik yaşlı migmatitik kayalarından oluşan ve bu temel kayaları üzerine Tersiyer döneminde meydana gelen tektoniğe bağlı olarak gelişen protomilonit, milonit, ultramilonitle temsil edilen Simav Milonitleri örnek olarak verilebilir.
  • Şerit Milonit
    Fransa'da ise milonite, kırılgan veya sünek olabilen deformasyon modundan bağımsız olarak, tane boyutunda önemli bir küçülme geçirmiş herhangi bir kaya için geçerlidir. [7]
  • Almanlara göre milonit terimi; belirli bir yapıya sahip bir tür kayayı tanımlar, mineral içeriği hakkında bilgi vermez.
  • İtalyanlara göre milonit; yüzeyde makaslama bölgesi, kayalık malzemenin sertliğinden (kataklazitler oluşur, ezilmiş metamorfik olmayan kayaçlar) dolayı kohezyon kaybının olduğu faylarla devam edebilir. (Derinlik, 250 - 300 ° C izoterminin altında) Deformasyon, özellikle yapraklı, kohezif kayaçlar, tam olarak milonitleri oluşturarak kanal şeklinde meydana gelir.

Oluşumu

  • Burns Bluff milonit
    Milonit oluşumu, bir yandan ana kayanın malzeme özelliklerine, diğer yandan deformasyon sırasındaki fiziksel koşullara bağlıdır. Büyük miktarlarda kuvars ve feldispat içeren yer kabuğunun tipik silikat kayaçlarında, plastik deformasyon yaklaşık 280 ° C'de ve 10 km derinlikte başlar. Tuzlu kayalar ve mermer durumunda, sıcaklıklar önemli ölçüde daha düşüktür. Deformasyon oranları 10−13 ile 10−15 s - 1 arasındadır. Deforme olmuş mineraller genellikle ana kayadan daha küçüktür. Bununla birlikte, çok yüksek sıcaklıklarda ve düşük deformasyon oranlarında, mineraller büyüme eğilimindedir ve iri taneli milonitler (blastomilonitler) oluşur.[8]
  • Milonitler, sünek fay zonlarında büyük kayma gerilmesinin birikmesiyle oluşan sünek olarak deforme olmuş kayaçlardır.
  • Milonit oluşumuna ilişkin birçok farklı görüş vardır, ancak genel olarak kristal-plastik deformasyonun meydana gelmiş olması gerektiği ve kırılma ve kataklastik akışın milonit oluşumunda ikincil süreçler olduğu kabul edilmektedir.
  • Değirmende tanelerin mekanik olarak aşınması meydana gelmez, ancak bunun, Yunan μύλος mylos'tan yani değirmen anlamına gelen milonitleri oluşturan süreç olduğu düşünülüyordu.[9] Milonitler 4 km'den az olmayan derinliklerde oluşur.[10]
  • Kristal-plastik deformasyonu barındıran birçok farklı mekanizma vardır. Kabuklu kayaçlarda en önemli süreçler diskolasyon oluşumu ve difüzyon oluşumudur.

Diskolasyon oluşumu, kristallerin iç enerjisini artırma görevi görür. Bu etki, tane sınır alanını artırarak ve tane hacmini azaltarak, mineral tane yüzeyinde enerji depolayarak iç enerjiyi azaltan tane sınırı göçü yeniden kristalleşmesi ile telafi edilir. Bu süreç, diskolasyonları alt tane sınırları içinde düzenleme eğilimindedir. Alt tanecik sınırlarına daha fazla diskolasyon eklendikçe, bu alt tanecik sınırı boyunca yanlış yönelim, sınır yüksek açılı bir sınır haline gelene ve alt tanecik etkili bir şekilde yeni bir tane haline gelene kadar artacaktır. Bazen alt tanecik dönüşünün yeniden kristalleşmesi olarak adlandırılan bu işlem[11], ortalama tanecik boyutunu küçültme işlevi görür.

Creswick Tepeleri S-C milonit 4

Difüzyon sürünmesindeki kritik mekanizmalar olan hacim ve tane sınırı difüzyonu, yüksek sıcaklıklarda ve küçük tane boyutlarında önemli hale gelir. Bu nedenle bazı araştırmacılar, milonitlerin diskolasyon oluşması ve dinamik yeniden kristalleşme ile oluştuğundan, tane boyutu yeterince küçültüldüğünde difüzyon oluşmasına geçişin meydana gelebileceğini iddia etmişlerdir.

Petrografik Mikroskopta Periodotitik Milonit

Milonitler genellikle yüksek gerilme oranlarının odaklandığı sünek makaslama bölgelerinde gelişir. Bunlar, fay breşleri oluşturan kataklastik kırılgan fayların derin kabuksal karşılıklarıdır.[12]

Milonitler, deformasyonun meydana geldiği metamorfik dereceye veya geliştirildikleri litotip veya mineralojiye göre sınıflandırılır. Milonitlerin yaygın olarak kullanılan bir diğer sınıflandırması, porfiroklastlara kıyasla matris yüzdesine dayanmaktadır.

Peki Porfiroklast nedir? Bir porfiroklast, metamorfik bir kayada bulunan, daha ince taneli kristallerden oluşan bir toprak kütlesi ile çevrili bir taş veya mineral parçasıdır.

Porfiroklastlar, dinamik yeniden kristalleşme veya kataklazi yer kütlesini oluşturmadan önce orijinal kayanın parçalarıdır. Bu, yer kütlesinden daha yaşlı oldukları anlamına gelir. Orijinal kayanın daha güçlü parçalarıdır. Kolayca deforme olamazlar ve bu nedenle yeniden kristalleşmeden etkilenmediler veya hemen hemen hiç etkilenmediler. Orijinal kayadaki fenokristaller veya porfiroblastlar olabilirler.

Porfiroklastlar genellikle porfiroblastlarla karıştırılır.

İkincisi de daha ince bir matris içinde büyük kristallerdir, ancak deformasyon sırasında veya sonrasında ve matrisin oluşması sırasında veya sonrasında büyümüşlerdir. Porfiroblast büyümesinin zamanlaması, içlerinde poikiloblast olarak korunan mikro yapı incelenerek belirlenebilir.

Kuvvetli bir şekilde deforme olmuş kayalarda porfiroklastlar genellikle kayadaki kayma gerilmesiyle döndürülür.

Şekilleri, makaslamanın yönünü belirlemek için kullanılabilir.

Porfiroklastların İnce taneli, Sin-kinematik Olarak Yeniden Kristalize Edilmiş Matrise Nispi Oranındaki Aşamalar

  • Protomilonit, milonitleşmenin erken aşamalarında,% 50'den fazla porfiroklast içeren bir kayadır. Deformasyonun başlamasıyla birlikte, bir protomilonit, ana kayanın büyük kalıntı tanelerini çevreleyen çok ince taneli bir matris ile bir harç dokusu gösterir. Kayaç, porfiroklastları oluşturan kaba bir yapraklanmaya ve oldukça zayıf bir çizgiye sahiptir.
  • Milonit, ağırlıklı olarak kristal-plastik işlemlerle tane boyutunda büyük bir küçülme geçirmiş yapraklanmış ve çizgisel bir kayadır. Milonit, % 10 %50 porfiroklast, yani matrisin % 50 ila 90'ını içerir. Gözle görülebilecek bir kayaçtır. Ana mineral bileşenleri; plajiyoklaz, kuvars, biyotit, muskovit, klorit, serizit, silimanit, disten, granattan oluşur. Kuvars milonitik kayalarda en fazla bulunan mineral bileşeninden biridir.[13]
  • Ultramilonit sert, çakmaktaşı benzeri ve koyu renkli olup, aşırı tane boyutu küçültme ve dinamik yeniden kristalizasyonun görsel sonucudur. Genellikle küçük porfiroklastlar kayanın% 10'undan daha azını oluşturur.
  • Diğer yaygın olarak kullanılan , önemli statikle kristalleşmeye sahip bir milonite blastomilonit ve ince taneli, mika bakımından zengin bir milonite (bir fillite benzeyen) fillonit denir.
  • Bu sınıflandırmadaki sorun, matris tane boyutu ve porfiroklast tane boyutu arasında keyfi bir sınırın tanımlanması gerektiğidir. Diğer bir problem, yüksek metamorfik derecede veya ince taneli veya monomineralik ana kayalarda gelişen milonitlerin normalde porfiroklast geliştirmemesidir; bu nedenle, ultramilonit mutlaka milonit veya protomilonitten daha yüksek bir suşu temsil etmez.[14]

Milonit Oluşumu İçin Koşullar

Wester Keolka. Bu kayaçlar, İskoçya'daki Moine bindirmesine eşdeğer olduğu düşünülen, önemli bir jeolojik sınır olan Wester Keolka kesme bölgesinin milonitleridir.

Milonit oluşumu bir yandan ana kayanın malzeme özelliklerine ve diğer yandan deformasyon sırasındaki fiziksel koşullara bağlıdır. Tipik olarak silikat kaya yer kabuğunda , içeren büyük miktarda kuvars ve feldispat , plastik deformasyon başlar 280° C yaklaşık 10 km derinlikte.

Blasto Milonit, Duemler Dağı, Antarktika

Tuz kayaları ve mermer için sıcaklıklar önemli ölçüde daha düşüktür. Deformasyon oranları 10 −13 ile 10 −15 s −1 arasındadır. Deforme olmuş mineraller genellikle ana kayadan daha küçüktür. Bununla birlikte, çok yüksek sıcaklıklarda ve düşük deformasyon oranlarında, mineraller büyüme eğilimindedir ve iri taneli milonitler ( blastomilonitler ) oluşur. [15][16]

Açıklama

Curl Dağı, Antarktika

Milonit olaylarının çoğu gnayslara (çizgili gnays, gözlü gnays ..) yol açar, ancak milonit gnays ile eşanlamlı değildir çünkü bu tür kayaçlar, bir orojenetik olaydaki P veya T artışından dolayı bölgesel metamorfizma tarafından da oluşturulabilir.[17]

Çıkışı

Milonitler, tektonik fay zonlarında, iki kaya kütlesinin birbiri üzerinden kayarak kayma hareketi ile oluşur. Milonitlerin temel özelliği, kayanın yüksek sıcaklıklarda sünek deformasyonudur. Milonit içindeki minerallerin büyük çoğunluğu plastik deformasyonla değiştirilmiş olmalıdır. Bunun tersine, süreç kırılgan alanda gerçekleşirken, bir kataklazit içindeki mineraller mekanik sürtünme ile kırıldı. Milonitler, belirgin bir katman dokusuna ve çoğunlukla tektonik hareketin yönünü gösteren net bir gerilme çizgisine sahiptir.[18]

Dinamik Kristalleşme

Plastik deformasyon, minerallerin dinamik kristalleşmesinden kaynaklanır. Minerallerin kayma gerilimine adaptasyonu sürekli (dinamik olarak), her şeyden önce kristallerin sınır yüzeylerinde dengelenerek, iç kristal seviyelerinde dengelenerek gerçekleşir. Aynı tip mineralden iki kristal birbirine bitişikse, bir tane diğerini difüzyon yoluyla "tüketebilir"; bu süreç, tane sınırı göçü olarak bilinir.[19]

Özellikler

Boudinaged turmalin kristalleri

Asidik plütonik kayalardan veya meta volkanitlerden türetilen milonitlerin ana elementi kuvars şerididir (kuvars açısından zengin yataklar ve rekristalize feldispatlar). Deformasyonda, kalıntı kuvars kristalleri kırılır ve yeni oluşan kuvars gerilim altında büyür.

Minerallerin dinamik yeniden kristalleşmesi, kuvars ve fillit yataklarının bantlarının değişmesiyle iyi tanımlanmış bir tabakanın gelişmesine neden olur.[20]

Blasto milonitler

İri tanelidir, genellikle belirgin tektonik bantlaşma olmaksızın şekerli görünümdedir. Blastomilonit, granoblastik bir matris (blastlar) ile kalıplanmış kırık kristalleri (klastlar ve porfiroklastlar) gösteren bir milonittir.[21]

Megakristik GDT'de SE Mt Sullivan ultramilonit

Ultra milonitler

Genellikle aşırı tane boyutunda azalma geçirmişlerdir. Yapısal jeolojide, ultramilonit,% 90'dan fazla matris taneciklerinin modal yüzdesi ile tanımlanan bir tür milonittir.[22] Ultra milonit genellikle sert, koyu renkli, görünüşte çakıllı ve bazen psödotakilit ve obsidiyene benzer. Tersine, ultramilonit benzeri kayaçlar bazen "deforme olmuş psödotakilittir". [23][24][25] [26]Yönlü dokuya sahip ve % 10'dan daha az pofiroklasta sahip olduğu için tipiktir. Ana mineral bileşimi kuvars, plajiyoklar, biyotit, muskovit; klorit ve tali mineralleri ise mat olmayan mineraller rutili oluşturur. Ultra milonit, hiçbir görünür porfiroklastın kalıcı olmadığı bir milonittir. Kayanın tamamı, düzenlemeleri sayesinde bir milonitin ana özelliği olan son derece net bir katman dokusu oluşturan ince taneli bileşenlerden oluşur. Porfiroklastlar çok az bulunur veya yoktur, payları% 10'dan azdır.[27]

    Mezo milonitler

    Kayda değer miktarda tane boyutu azalması geçirmişlerdir ve matris taneciklerinin modal yüzdelerinin% 50 ile % 90 arasında olmasıyla tanımlanırlar. [28] [29]

    Proto milonitler

    milonit

    Sınırlı tane boyutu azalması yaşayan milonitlerdir ve matris taneciklerinin modal yüzdelerinin% 50'den az olmasıyla tanımlanır. Bu kayalarda milonitleşme eksik olduğu için, kalıntı taneler ve dokular belirgindir ve bazı protomilonitler, yapraklı kataklazite hatta bazı şistlere benzeyebilir. Ana mineral bileşiminde plajiyoklaz, alkali feldspat, kuvars, biyotit, muskovit, granat ve disten bulunur. Porfiroklastlar, yani orijinal kayanın parçaları, çizgili görünen ince taneli bir ortamda düz elementler olarak toplam kayanın% 50'sinden fazla hacim payına sahiptir. Genel olarak, kayanın mercek benzeri paralel bir dokusu vardır.

    Fillonitler

    Filosilikat (örneğin, klorit veya mika) bakımından zengin milonitlerdir. Tipik olarak iyi gelişmiş bir ikincil kesme (C ') kumaşına sahiptirler. Kayaçta, açık bir paralel dokuda düzenlenmiş ince taneli bileşenler (çapı 0,5 mm'den küçük) baskındır. Porfiroklastlar kayanın% 50 - 10'unu oluşturur ve ince taneli matrisle çevrelenmiştir. Mika bakımından zengin milonitlerdir.

    Yorumlama

    • Milonit bölgelerinde meydana gelen yer değiştirmelerin belirlenmesi, sonlu yamulma ekseninin yönelimlerinin doğru bir şekilde belirlenmesine ve bu yönelimlerin artan gerinim eksenine göre nasıl değiştiğinin anlaşılmasına bağlıdır. Bu, kayma hissinin belirlenmesi olarak adlandırılır.
    • Deformasyonun düzlem gerinim basit kayma deformasyonu olduğunu varsaymak yaygın bir uygulamadır. Bu tür gerinim alanı, yer değiştirmenin kesme bölgesi sınırına paralel olduğu bir tablo bölgesinde deformasyonun meydana geldiğini varsayar. Ayrıca, deformasyon sırasında artan gerinim ekseni, kayma bölgesi sınırına 45 derecelik bir açıyı korur. Sonlu gerinim eksenleri başlangıçta artan eksene paraleldir, ancak ilerleyen deformasyon sırasında uzağa doğru döner.
    • Kinematik indikatörler, milonitlerde kayma hissinin belirlenmesini sağlayan yapılardır.
    • Çoğu kinematik gösterge, basit kaymadaki deformasyona dayanır ve artan gerinim eksenlerine göre sonlu gerinim eksenlerinin dönme anlamını verir.
    • Basit kesmenin getirdiği kısıtlamalar nedeniyle, yer değiştirmenin yapraklanma düzleminde mineral germe lineasyonuna paralel bir yönde meydana geldiği varsayılır. Bu nedenle, kesme hissini belirlemek için lineasyona paralel ve yapraklanmaya dik bir düzlem görüntülenir.
    • Mika-balık İtalyan Alplerinden milonitik kuvarsit içinde küçük mika balığı (deforme mika kristalleri).
      En yaygın kesme duyusu göstergeleri, C / S kumaşları, asimetrik porfiroklastlar, damar ve dike dizileri, örtülü porfiroklastlar ve mineral liflerdir. Tüm bu göstergeler, sonlu yamulma eksenlerinin yönelimleriyle doğrudan ilişkili olan bir mono klinik simetriye sahiptir. Asimetrik kıvrımlar ve boudinajlar gibi yapılar, sonlu yamulma eksenlerinin yönelimleriyle de ilişkili olsa da, bu yapılar farklı şekil değiştirme yollarından oluşabilir ve güvenilir kinematik göstergeler değildir.[30]

    Mazarambroz'daki Toledo'dan Milonit Çemberi

    Peridotitik Milonit

    İber Yarımadası'nın merkezinde, özellikle Mazarambroz'un Toledo kasabası yakınlarında, Toledo'nun migmatitik kubbesini (kuzeyde yer alır), meta-tortul kayalardan ve kuzeyden ayıran duvarla ilişkili önemli bir milonitik deformasyon bandı bulunur. Mora-Las Ventas'ın tardisinematik granitleri (güneyde bulunur).[31]

    Ekstradan bakınız

    dış bağlantılar

    1. https://www.researchgate.net/publication/276326307_Le_quartz_en_rubans_dans_les_mylonites
    1. https://www.britannica.com/science/mylonite
    2. https://www.researchgate.net/publication/276326307_Le_quartz_en_rubans_dans_les_mylonites
    3. http://myweb.facstaff.wwu.edu/talbot/cdgeol/Structure/Mylonite/Mylonite.html
    1. http://www.ugr.es/~agcasco/personal/petmet/seminario01/PetMet_seminario1.pdf

    Galeri

    Kaynakça

    1. Atabey, Volkan (6 Mayıs 2019). "Süneklik Nedir?". Volkan Atabey - İnşaat Mühendisliği. 5 Ağustos 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 30 Ekim 2020.
    2. Макрыгина, В.А.; Антипин, В.С. (2018). "Геохимия и петрология метаморфических и магматических пород Ольхонского региона Прибайкалья". doi:10.21782/b978-5-9909584-4-9.
    3. Volkova, M.A.; Volkov, A.C. (2009). "МИГРАЦИЯ РАДИОНУКЛИДОВ ИЗ ПРИПОВЕРХНОСТНЫХ ХРАНИЛИЩ ВО ВМЕЩАЮЩИЕ ПОРОДЫ". Geophysics 2009. European Association of Geoscientists & Engineers. doi:10.3997/2214-4609-pdb.319.118. 43. harf sırasında bulunan |başlık= parametresi line feed character içeriyor (yardım)
    4. Дагбажык, А.С.; Dagbazhyk, A.S.; Монгуш, Ч.М.; Mongush, Ch.M. (12 Nisan 2017). "Электронный корпусный словарь тувинского языка". Международный журнал "Программные продукты и системы". 10. doi:10.15827/2311-6749.23.250. ISSN 0236-235X.
    5. Bolʹshai︠a︡ rossiĭskai︠a︡ ėnt︠s︡iklopedii︠a︡. Osipov, I︠U︡. S. (I︠U︡riĭ Sergeevich), 1936-, Осипов, Ю. С. (Юрий Сергеевич), 1936-. Moskva: Большая российская энциклопедия. 2004-. ISBN 5-85270-320-6. OCLC 57660759. Tarih değerini gözden geçirin: |tarih= (yardım)
    6. Горбунов-Посадов, М.М. (2020). "БОЛЬШАЯ СОЮЗНАЯ ЭНЦИКЛОПЕДИЯ". Проектирование цифрового будущего. Научные подходы. АО "РИЦ "ТЕХНОСФЕРА". doi:10.22184/978.5.94836.575.6.82.87. ISBN 978-5-94836-575-6.
    7. "mylonite". 10 Ekim 2014 tarihinde kaynağından arşivlendi.
    8. "mylonit". 13 Eylül 2006 tarihinde kaynağından arşivlendi.
    9. "Lapworth, C. (1885). "İngiliz jeolojisindeki yayla tartışması; nedenleri, seyri ve sonucu". Doğa. 32: 558–559".
    10. White, Joseph Clancy (Aralık 1996). "Transient discontinuities revisited: pseudotachylyte, plastic instability and the influence of low pore fluid pressure on deformation processes in the mid-crust". Journal of Structural Geology (İngilizce). 18 (12): 1471-1486. doi:10.1016/S0191-8141(96)00059-4.
    11. "mylonite". 13 Eylül 2006 tarihinde kaynağından arşivlendi.
    12. Sibson, R. H. (Mart 1977). "Fault rocks and fault mechanisms". Journal of the Geological Society (İngilizce). 133 (3): 191-213. doi:10.1144/gsjgs.133.3.0191. ISSN 0016-7649.
    13. "Simav (Kütahya) Güneyindeki Metaformik Kayaçların Yapısal ve Petrografik Özellikleri , sayfa 30, 31, 37".
    14. "Mylonitic marble". 7 Şubat 2016 tarihinde kaynağından arşivlendi.
    15. Murawski, Hans. (1983). Geologisches Wörterbuch. 8., völlig überarbeitete und erw. Aufl. Stuttgart: Enke. ISBN 3-432-84108-6. OCLC 10574563.
    16. von Seidlitz, W. (Kasım 1910). "Über Granit-Mylonite und ihre tektonische Bedeutung". Geologische Rundschau. 1 (5): 188-197. doi:10.1007/bf01802461. ISSN 0016-7835.
    17. "milonite". 21 Temmuz 2012 tarihinde kaynağından arşivlendi.
    18. "mylonit". 13 Eylül 2006 tarihinde kaynağından arşivlendi.
    19. "mylonit". 13 Eylül 2006 tarihinde kaynağından arşivlendi.
    20. Renard, M.; Rafélis Saint Sauveur, Marc de (1998). "Géochimie des éléments traces de la phase carbonatée des calcaires de la coupe du stratotype historique de l' Aptien inférieur dans la région de Cassis-La Bédoule (SE France)". Géologie Méditerranéenne. 25 (3): 43-54. doi:10.3406/geolm.1998.1623. ISSN 0397-2844.
    21. Renard, M.; Rafélis Saint Sauveur, Marc de (1998). "Géochimie des éléments traces de la phase carbonatée des calcaires de la coupe du stratotype historique de l' Aptien inférieur dans la région de Cassis-La Bédoule (SE France)". Géologie Méditerranéenne. 25 (3): 43-54. doi:10.3406/geolm.1998.1623. ISSN 0397-2844.
    22. Sibson, R. H. (Mart 1977). "Fault rocks and fault mechanisms". Journal of the Geological Society (İngilizce). 133 (3): 191-213. doi:10.1144/gsjgs.133.3.0191. ISSN 0016-7649.
    23. Passchier, C.W. (Ocak 1982). "Pseudotachylyte and the development of ultramylonite bands in the Saint-Barthélemy Massif, French Pyrenees". Journal of Structural Geology (İngilizce). 4 (1): 69-79. doi:10.1016/0191-8141(82)90008-6.
    24. White, Joseph Clancy (Aralık 1996). "Transient discontinuities revisited: pseudotachylyte, plastic instability and the influence of low pore fluid pressure on deformation processes in the mid-crust". Journal of Structural Geology (İngilizce). 18 (12): 1471-1486. doi:10.1016/S0191-8141(96)00059-4.
    25. Takagi, Hideo; Goto, Kiyohiko; Shigematsu, Norio (Eylül 2000). "Ultramylonite bands derived from cataclasite and pseudotachylyte in granites, northeast Japan". Journal of Structural Geology (İngilizce). 22 (9): 1325-1339. doi:10.1016/S0191-8141(00)00034-1.
    26. Ueda, T.; Obata, M.; Di Toro, G.; Kanagawa, K.; Ozawa, K. (2008). "Mantle earthquakes frozen in mylonitized ultramafic pseudotachylytes of spinel-lherzolite facies". Geology (İngilizce). 36 (8): 607. doi:10.1130/G24739A.1. ISSN 0091-7613.
    27. "mylonite". 10 Ekim 2014 tarihinde kaynağından arşivlendi.
    28. "mylonite". 13 Eylül 2006 tarihinde kaynağından arşivlendi.
    29. "mylonite". 13 Eylül 2006 tarihinde kaynağından arşivlendi.
    30. "Mylonite". 13 Eylül 2006 tarihinde kaynağından arşivlendi.
    31. "Mazarambroz'daki Milonit Çemberi". 31 Aralık 1990. 28 Ocak 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: Ocak 28, 2020.
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.